Интересные и нужные сведения о строительных материалах и технологиях

ОСНОВНЫЕ СХЕМЫ ИСПОЛЬЗОВАНИЯ ВОДНОЙ ЭНЕРГИИ

Имеются три основные схемы создания сосредоточенного напора ГЭС: 1) плотинная схема, когда напор создается плотиной; 2) деривационная схема, когда напор создается преимущественно посредством деривации, осуществляемой в виде канала, туннеля или трубопровода; 3) плотинно-деривационная схема, когда напор создается и плотиной, и деривацией. Плотины имеются во всех трех схемах.

ПЛОТИННАЯ СХЕМА

Плотинная схема (рис. 2-3) осуществляется преимущественно при больших расходах воды в реке и малых уклонах ее свободной поверхности. Посредством плотины, построенной в пункте В, создается подпор воды, который распространяется вверх по реке до пункта А. Разность уровней воды в пунктах А и В равна H0 + Ah. Часть общего падения Ah будет потеряна при движении -воды в верхнем бьефе. Сосредоточенный перепад уровней, т. е. напор будет равен 0. В плотинной схеме в зависимости от напора ГЭС может быть русловой или припло- тинной.


Русловой называется такая ГЭС, у которой здание ГЭС наряду с плотиной входит в состав сооружений, создающих напор (рис. 2-4).


Здание русловой ГЭС воспринимает полное давление воды со стороны ВБ и должно удовлетворять условию устойчивости, как и плотина. Русловая ГЭС может быть построена при сравнительно небольшом напоре.

При средних и больших напорах, превышающих диаметр турбины более чем в 4—5 раз, здание ГЭС не может входить в состав напорного фронта. В таких случаях строят при плоти иную ГЭС, здание которой располагается за плотиной и не воспринимает полного давления воды (рис. 2-5). Подвод воды к турбинам такой ГЭС осуществляется трубопроводами, размещенными в теле или поверх бетонной плотины, под земляной плотиной или туннелями, прокладываемыми в обход плотины.

ДЕРИВАЦИОННАЯ СХЕМА

При деривационной схеме высота плотины может быть небольшой, обеспечивающей лишь отвод воды из реки в деривацию, а сосредоточенный напор получается за счет разности уклонов воды в реке и в деривации. На рис. 2-6 приведена схема ГЭС с деривацией в виде открытого канала. Плотина создает небольшой подпор. Из подпертого бьефа вода по деривационному каналу поступает в напорный бассейн, откуда она подается по трубопроводам к турбинам ГЭС. От турбин вода по отводящему каналу направляется в реку или деривацию следующей ГЭС или же в ирригационный оросительный канал.


При пересеченном или горном рельефе местности, деривацию можно выполнить в виде туннеля, прорезывающего горный массив (рис. 2-7), или в виде трубопровода, уложенного по поверхности земли. Деривация может состоять частично из канала и туннеля, из трубопровода и туннеля и т. п.

Существует два типа гидротехнических туннелей: безнапорные, заполненные водой не полностью, с атмосферным давлением над свободной поверхностью воды, и напорные, в которых вода заполняет все сечение туннеля. В напорном туннеле гидродинамическое давление даже в самой верхней точке сечения выше атмосферного. В конце длинного подводящего напорного туннеля устраивается уравнительный резервуар для уменьшения гидравлического удара при резких изменениях расхода воды, потребляемой ГЭС (рис. 2-7). В конце подводящего безнапорного туннеля как и в конце деривационного канала сооружается напорный бассейн (рис. 2-6).

При длинной безнапорной подводящей деривации (канал, безнапорный туннель) в конце ее иногда устанавливается бассейн суточного регулирования расхода и мощности ГЭС (рис. 2-6).

Если река несет большое количество крупных наносов (песка), попадание которых в деривацию может вызвать нежелательные последствия, то в начале подходящей деривации сооружается отстойник. Наносы, выпавшие в отстойнике, смываются в реку через промывной канал.

Если возможно переохлаждение воды и образование внутривод- ного льда — шуги, то в случае надобности на головном узле, на деривационном канале или на напорном бассейне сооружают шугосбросы.


Деривация может быть отводящей. При большой длине отводящая деривация часто выполняется в виде туннеля, когда ГЭС является подземной.

Деривационные схемы установок выгодны в горных условиях, при больших уклонах свободной поверхности воды в реке и сравнительно малых используемых расходах, когда при относительно небольшой длине и малых поперечных размерах деривации можно получить большой напор и большую мощность ГЭС. При благоприятных геологических и топографических условиях на горной реке может быть применена и плотинная схема. Посредством плотины молено создать водохранилище Для регулирования стока реки.

ПЛОТИННО-ДЕРИВАЦИОННАЯ СХЕМА

В плотинно-деривационной схеме используются выгодные свойства .обеих предыдущих схем, т. е. может быть создано водохранилище и использовано падение реки ниже плотины (рис. 2-8). На используемом участке реки А—В при неизменной отметке верхнего бьефа ВБ местоположение плотины может быть различным. Чем выше по течению расположена плотина, тем меньше ее высота. При этом уменьшается размер водохранилища, т. е. уменьшается затапливаемая территория, но увеличивается длина деривации и увеличиваются потери напора hA-B- Тщательное техникоэкономическое сравнение вариантов позволяет выбрать наилучший.

КАСКАДЫ ГИДРОЭЛЕКТРОСТАНЦИЙ И ВОДОХРАНИЛИЩ

Несколько ГЭС, последовательно расположенных на одном водотоке, образуют каскад. Проектирование и осуществление каскадов ГЭС имеет целью возможно более полное использование падения реки и ее стока в интересах всего народного хозяйства. При этом стремятся за счет создания водохранилищ нанлучшим образом зарегулировать сток рек.



Местоположение каждого гидроузла, его напор, объем образуемого им водохранилища и т. п. выбираются на основе тщательного изучения природных условий и всестороннего технико-экономического анализа. Для того чтобы использовать возможно больший сток на данной установке, створ плотины стремятся расположить ниже крупного притока, а для уменьшения ущерба от затопления створ плотины выбирают выше крупных городов. При выборе створа плотины часто решающее значение имеют топографические и геологические ус-ловия.

При сооружении каскада ГЭС обычно оказывается целесообразным некоторый подпор вышерасположенной ступени, благодаря чему падение реки используется более полно и может производиться глубокое суточное регулирование мощности ГЭС без существенных колебаний уровня НБ.

На рис. 2-9 приведена схема Волжско-Камского каскада ГЭС и водохранилищ. Река Волга имеет длину 3690 км и общее падение 250 м. Ступенчатой линией показаны проектные уровни воды после осуществления всей схемы реконструкции Волги.

Каскады ГЭС построены и строятся в СССР на многих реках — Енисее, Ангаре, Иртыше, Каме, Свири, Вуоксе, Днепре, Сырдарье, Нарыие, Чирчике, Куре, Риони, Ингури, Сулаке и др.

Д.С.Щавелев, Гидроэнергетические установки (гидроэлектростанции, насосные станции и гидроаккумулирующие электростанции), Л., 1981

Литература

Голышев А.Б., Бачинский В.Я., Полищук В.П., Железобетонные конструкции

Зайцев Ю.В., Строительные конструкции заводского изготовления

Е.Ф. Лысенко, Армоцементные конструкции

С.В. Поляков, Каменная кладка из пильных известняков

В. Ермолов, Пневматические строительные конструкции

Журавлев А.А., Вержбовский Г.Б., Еременко Н.Н., Пространственные деревянные конструкции

А.В. Калугин, Деревянные конструкции

Е.К. Карапузов, Г. Лутц, X. Герольд, Сухие строительные смеси

А.А. Пащенко, Теория цемента

Волков В.А., Сантехника: как все устроено и как все починить

А. Грассник, Бездефектное строительство многоэтажных зданий

Д.С. Щавелев, Гидроэнергетические установки

Д.С. Щавелев, Экономика гидротехнического и водохозяйственного строительства

Гидротехнические сооружения. Ч. I. Глухие плотины

Гидротехнические сооружения. Ч. II. Водосливные плотины

Производство гидротехнических работ

Н.П. Розанов, Гидротехнические сооружения

А. П. Юфин, Гидромеханизация

Термоэлектрические преобразователи энергии

Использование возобновляемой энергии

Бетон и железобетон, избранные статьи

Современное состояние и перспективы развития энергетики