Интересные и нужные сведения о строительных материалах и технологиях

Структура и свойства теплоизоляционных материалов

Теплоизолирующая способность материала зависит не только от количества, но и характера пор, их распределения, размеров, открыты они или замкнуты. Наиболее высокими теплоизоляционными свойствами обладают материалы, содержащие при всех прочих равных условиях большое количество мелких и замкнутых пор, заполненных воздухом. Воздух в неподвижном состоянии обладает очень малой теплопроводностью (при 20°С) — 0,02 Вт/(м-°С). Если взять какое-либо высокопористое тело с мелкими и замкнутыми порами и рассмотреть его структуру под микроскопом, то можно увидеть множество воздушных пор, отгороженных друг от друга тонкими вещественными стеночками - совокупность таких пор, содержащих малотеплопроводный воздух, создает преграду на пути следования тепла или холода и делает материал малотеплопроводным. Для улучшения изоляционных свойств материала желательно, чтобы на пути теплового потока имелось как можно больше таких воздушных пор, а тонкие ограничивающие их стенки располагались сотообразно.

В наибольшей мере изолирующее свойство воздуха проявляется только при спокойном его состоянии, так как находящийся в движении воздух оказывает содействие переносу тепла. Крупнопористое, раковистое строение материала с вытянутыми порами создает условия для возникновения конвекционных потоков воздуха, что вызывает усиление передачи тепла через материал.

Чем меньше объем воздуха, заключенного в порах, тем меньше его подвижность и тем лучше изолирующие свойства. Теплоизоляционные свойства материалов зависят также от соотношения объемов воздуха, заключенного в порах, и твердого вещества, входящего в единицу объема материала. Чем тоньше слой твердого вещества, окружающего поры, тем лучше теплозащитные свойства материала и меньше его коэффициент теплопроводности. В очень пористых материалах с очень малой плотностью объем воздуха, содержащегося в них, настолько велик и теплоизолирующие свойства настолько большие, что роль твердого вещества в передаче становится очень незначительной. В таких материалах теплопроводность может приближаться к теплопроводности воздуха (например, в мипоре).

Если сравнить теплопроводность материалов, имеющих одинаковый вещественный состав, но различную пористость, то можно заметить, что теплопроводность почти пропорциональна плотности материала, т. е. содержанию в них твердого вещества.

Поры и пористые каналы в материале могут быть созданы вспениванием его, введением при изготовлении материала газообразующих добавок, контактным склеиванием или спеканием отдельных зерен и частиц материала, взаимоналожением большого количества волокон и т. п.

Структура материала оказывает существенное влияние на его теплозащитные свойства. Особенно наглядно это проявляется в материалах волокнистого строения. Например, теплопроводность древесины вдоль волокон приблизительно в 2 раза больше теплопроводности поперек волокон. Для характеристики теплоизоляционных свойств материалов, применяемых в виде засыпок, большое значение имеет крупность зерен. С уменьшением размера зерен теплозащитные свойства материала улучшаются, что имеет место даже в том случае, если плотность его остается неизменной.

Таким образом, рассматривая общий характер строения теплоизоляционных материалов, можно сделать вывод, что малую теплопроводность материалам придают поры, когда они заполнены воздухом, но если поверхность этих пор будет покрыта пленкой воды или поры будут заполнены водой, то теплоизоляционные свойства материалов резко снижаются. Это происходит потому, что вода имеет большую теплопроводность, нежели воздух (примерно в 25 раз). Поэтому при эксплуатации теплоизоляционные материалы необходимо защищать от увлажнения.

Литература

Голышев А.Б., Бачинский В.Я., Полищук В.П., Железобетонные конструкции

Зайцев Ю.В., Строительные конструкции заводского изготовления

Е.Ф. Лысенко, Армоцементные конструкции

С.В. Поляков, Каменная кладка из пильных известняков

В. Ермолов, Пневматические строительные конструкции

Журавлев А.А., Вержбовский Г.Б., Еременко Н.Н., Пространственные деревянные конструкции

А.В. Калугин, Деревянные конструкции

Е.К. Карапузов, Г. Лутц, X. Герольд, Сухие строительные смеси

А.А. Пащенко, Теория цемента

Волков В.А., Сантехника: как все устроено и как все починить

А. Грассник, Бездефектное строительство многоэтажных зданий

Д.С. Щавелев, Гидроэнергетические установки

Д.С. Щавелев, Экономика гидротехнического и водохозяйственного строительства

Гидротехнические сооружения. Ч. I. Глухие плотины

Гидротехнические сооружения. Ч. II. Водосливные плотины

Производство гидротехнических работ

Н.П. Розанов, Гидротехнические сооружения

А. П. Юфин, Гидромеханизация

Термоэлектрические преобразователи энергии

Использование возобновляемой энергии

Бетон и железобетон, избранные статьи

Современное состояние и перспективы развития энергетики