Глубокое обесцвечивание и обессоливание воды
Водопроводная вода подогревается в теплообменнике и подается на осветлительный фильтр с двухслойной загрузкой (кварцевый песок и антрацит). В линию подачи воды на расстоянии от фильтра, превышающем 50 диаметров трубопровода, насосом-дозатором непрерывно подается раствор коагулянта — сульфат алюминия. Хлопьеобразование происходит в водяной «подушке» осветлительного фильтра. На установке малой производительности в качестве последнего служил Н-катионитовый фильтр, имеющий высокую цилиндрическую часть, тем самым и большую камеру хлопьеобразования. Укрупнение хлопьев должно продолжаться не менее 12—15 мин. Осветлительный фильтр с двухслойной загрузкой осветляет за один рабочий период 50—70 объемов воды на 1 объем насадки. Так, фильтр диаметром 1000 мм (площадь фильтрации 0,78 м2) при высоте загрузки 1000 мм очищает 40—50 м3 коагулированной воды при дозе коагулянта 30—35 мг/л. Перманганатная окисляемость осветленной воды составляет 50—60% исходной.
Вода, осветленная на механическоом фильтре, поступает затем на Н-катионитовый фильтр, а из него на декарбонизатор. Освобожденная от большей части диоксида углерода Н-катионированная вода после декарбонизатора подается насосом на фильтр с макропористым сорбентом (анионитом ИА-1р), затем на фильтр со слабоосновным анионитом (АН-31) и далее — в емкость некондиционной обессоленной воды. При изучении сорбции гумусовых веществ сорбентом ИА-1р показано, что он обладает повышенной емкостью и лучшей кинетикой при работе в солевой форме и в кислой среде.
В процессе коагуляции и последующего осветления вода практически нацело освобождается от гуминовых кислот, а в ней остаются хорошо растворимые фульво-кислоты. Как показали расчеты, при исходном содержании фульвокислот 8—10 мг/л и работе до до проскока 0,8—-1,0 мг/л по фульвокислотам, на фильтре с сорбентом ИА-1р очищается 170—200 объемов воды, отнесенных к 1 объему загрузки фильтра (приведенные объемы). Если критерием очистки избрать сорбцию 50% органических веществ, оставшихся после осветления и выраженных в перманганатной окисляемости, на фильтре с сорбентом ИА-1р очищается 500—600 приведенных объемов осветленной воды. Для определения проскока можно использовать метод перманганатной окисляемости, но точнее и быстрее проскок устанавливается по оптической плотности, определенной с помощью спектрофотометра. В описываемой схеме обесцвечивания и обессоливания озерной (речной) воды приготовление регенерирующих растворов и отмывка загрузки всех фильтров, кроме механических и катионитового, проводится Н-катионированной водой. Преимущества ее использования очевидны: при незначительной потере емкости сорбентов расход воды на отмывку и, следовательно, время отмывки значительно сокращаются.
На описываемой установке минеральные ионы сорбируются в соответствии с восстановленной при регенерации емкостью ионитов и составом исходной и декарбонизированной Н-катионированной воды.
Следует отметить, что определенной емкостью по органическим веществам обладают и аниониты I и II ступеней обессоливания. Это позволяет следующим образом распределить нагрузку по этапам очистки воды от органических веществ:
- прямоточная коагуляция — от 40 до 50% исходного содержания;
- сорбция на ионите ИА-1р — от 50 до 60% оставшегося после прямоточной коагуляции;
- сорбция на анионите АН-31 — от 30 до 40% оставшегося после сорбента ИА-1р;
- сорбция на фильтре смешанного действия — от 20 до 30% оставшегося после предыдущего фильтра.
При окисляемости исходной воды 4—5 мг O2/л можно отказаться от коагуляционной очистки и использовать только сорбент ИА-1р. Рабочий период фильтра определяется при этом заданной глубиной очистки воды от органических веществ.