Интересные и нужные сведения о строительных материалах и технологиях

Курсы расчета конструкций

Основные положения расчета элементов стальных конструкций

Принцип расчета стальных конструкций по предельным состояниям первой группы. Для предельных состояний первой группы общее условие прочности записывается так же, как и для железобетонных конструкций (см. гл. 3). Вид усилия в рассчитываемом элементе определяется внешней нагрузкой; при растяжении это продольная сила, при изгибе — изгибающий момент М и т. д. Геометрический фактор связан с характером распределения напряжений по поперечному сечению элемента; при равномерном распределении (осевое сжатие, осевое растяжение) — это площадь А, при линейном законе распределения (изгиб) — момент сопротивления W и т. п.

Нормативное сопротивление прокатной стали при растяжении, сжатии и изгибе. В качестве нормативного сопротивления при растяжении, сжатии и изгибе для сталей обычной и повышенной прочности в СНиП II-23 — 81 принят предел текучести и соответствующее нормативное сопротивление. В особых случаях (когда допустимо развитие больших пластических деформаций) для этих сталей в качестве нормативного сопротивления используется временное сопротивление (предел прочности). В этом случае расчетное сопротивление обозначают Ryn. Величины нормативных сопротивлений устанавливают с обеспеченностью не менее 0,95, т.е. чтобы вероятность проявления в материале участков с пониженными (против нормативного сопротивления) характеристиками была не менее 5 %. Значения предела текучести и временного сопротивления по ГОСТу находятся в заданных пределах: 0,95...0,995. Поэтому за нормативное сопротивление и приняты значения предела текучести или временного сопротивления, установленные в ГОСТах на металлы. Такой подход удобен также и потому, что значения оу и ои являются браковочными, т. е. контролируются при производстве и приемке проката.

Принцип расчета стальных конструкций по предельным состояниям второй группы. По предельным состояниям второй группы (по деформациям) расчет ведут по нормативным нагрузкам. Наиболее важен этот вид расчета для изгибаемых элементов. Расчет изгибаемых элементов по деформациям сводится к определению прогибов. Для однопролетной балки при равномерно распределенной нормативной нагрузке qn максимальный прогиб составит

Предельные допустимые значения относительных прогибов (т. е. прогибов в долях от длины пролета) приведены ниже.

По предельным состояниям второй группы, когда они выражены в появлении недопустимых прогибов или колебаний, расчет производят не всегда. При проверке жесткости изгибаемых элементов часто достаточно лишь убедиться, что принятая высота балки больше минимальной. Например, обычно не определяют укорочения колонн и прогибы высоких стропильных ферм. Расчет на колебания производят лишь для тех специальных сооружений, где они особенно опасны (висячие мосты, мачты, башни и др.). Однако проверка жесткости требуется для низких ферм, пояса которых выполнены из высокопрочных сталей, работающих при больших деформациях. Необходима проверка по деформациям также и для стальных форм, применяемых для изготовления предварительно напряженного железобетона. Это связано с тем, что повышенная де- формативность форм может привести к недопустимым отклонениям фактических размеров изделия от проектных, к чрезмерным потерям напряжений в напрягаемой арматуре (см. гл. 15).

Центрально растянутые элементы. Центрально растянутые элементы рассчитывают на прочность по формуле

В некоторых случаях можно допустить развитие больших пластических деформаций в ослабленном сечении. Элементы в этом случае можно рассчитывать не по пределу текучести, а по временному сопротивлению (пределу прочности), но с учетом повышенного коэффициента надежности:

Центрально сжатые элементы. Расчет центрально сжатых элементов ведут по первой группе предельных состояний. При этом расчет ведется по прочности — для коротких стержней, длина которых превышает наименьший поперечный размер не более чем в 5...6 раз; по устойчивости — для длинных гибких стержней.

При работе на сжатие короткие стальные стержни ведут себя так же, как и растянутые элементы. Поэтому сжатые короткие стержни рассчитывают на прочность по формуле растянутых стержней, а именно

Центрально сжатые длинные гибкие стержни при достижении силой критического значения изгибаются в плоскости меньшей жесткости, приобретая новую криволинейную форму. При дальнейшем незначительном увеличении нагрузки искривления стержня начинают быстро нарастать и стержень теряет свою несущую способность. Для этого случая расчетные сопротивления приводятся к расчетным значениям критических напряжений потери устойчивости стержней, сжатых осевой силой.

Зайцев Ю. В., Строительные конструкции заводского изготовления: Учеб. для вузов по спец. «Пр-во строит. изделий и конструкций». — М., 1987

Литература

Голышев А.Б., Бачинский В.Я., Полищук В.П., Железобетонные конструкции

Зайцев Ю.В., Строительные конструкции заводского изготовления

Е.Ф. Лысенко, Армоцементные конструкции

С.В. Поляков, Каменная кладка из пильных известняков

В. Ермолов, Пневматические строительные конструкции

Журавлев А.А., Вержбовский Г.Б., Еременко Н.Н., Пространственные деревянные конструкции

А.В. Калугин, Деревянные конструкции

Е.К. Карапузов, Г. Лутц, X. Герольд, Сухие строительные смеси

А.А. Пащенко, Теория цемента

Волков В.А., Сантехника: как все устроено и как все починить

А. Грассник, Бездефектное строительство многоэтажных зданий

Д.С. Щавелев, Гидроэнергетические установки

Д.С. Щавелев, Экономика гидротехнического и водохозяйственного строительства

Гидротехнические сооружения. Ч. I. Глухие плотины

Гидротехнические сооружения. Ч. II. Водосливные плотины

Производство гидротехнических работ

Н.П. Розанов, Гидротехнические сооружения

А. П. Юфин, Гидромеханизация

Термоэлектрические преобразователи энергии

Использование возобновляемой энергии

Бетон и железобетон, избранные статьи

Современное состояние и перспективы развития энергетики